The Trend of High-Performance Construction Glass Usage - Silicone Crystal Clear Bonding Technology (TSSA & TSSL & HM2400)

Jerry Ma - Dow Chemical Taiwan Limited

ZAK World Of Façade, Hong Kong Conference
Architectural Trends

• Maximize Façade Vision Effect through larger Glass Panel used, Linear or Point Fix Glazing Design & Structural Silicone Bonding >50 Years (SSG)
Shaping the façades of world cities with **silicone** technologies
Unmet need and Critical Customer Requirement

Clear silicone solutions for structural bonding, secondary sealing and weathersealing in the spirit of engineered transparency

Aesthetics/transparency combined with structural performance requirements and durability to assure 50 years life on construction façades

ICE Kraków, Photo: G Ziemianski

Photo Scagliola/Brakkee/ NeutelingsRiedijk Architects (The MAS City History Museum of Antwerp (Belgium))

Consumer Solutions
Unmet need and Critical Customer Requirement

‘Soft’ transfer of the load into the glass pane → avoiding stress peaks

no visibility from the exterior → aesthetics, sleek façade
Point Bonded Gas-Filled Insulating Glass

Gas-filled double and triple IGU

→ No drilling, no gaskets
→ No gas loss
→ No breaching of IG cavity

Designing office UltraCAD

Bilfinger & Berger, Germany

Consumer Solutions
Transparent Structural Silicone ADHESIVE (TSSA)

- Silicone film adhesive - 1mm thick film
- Simple application – 50mm-100mm, die-cut buttons
- Multiple layers, if required
- High transparency, crystal clear
- Strong adhesion performance
- High performance silicone durability
- Removable by cutting
- High design strength
 - 1.3 MPa Dynamic design strength
 - 0.6 MPa static design strength

12 button per case (1 is free for QA check use), 20 cards in 1 carton box

Coolers & Temperature recorder Included in carton box.

TSSA Case – Dow Europe S&T Office Building in Belgium
TSSA - Cure Behavior

- **One-part** material
- **Heat-activated addition-cure**
- **No cure by-products** (and no odor) are evolved during the reaction.
- Film adhesive is cured at temperatures of 120-130°C for a period of ~30 minutes while applying a pressure (0.15-1.3 MPa/ 22-128 psi).
- Optimum cure conditions are achieved in an autoclave.
Determine where to apply the buttons and marked with proper tool
TSSA – Application

Surface cleaning on both glass and stainless steel buttons
Position buttons & pre-apply pressure
TSSA – Application

Ideally pre-define pressure for perfect surface wetting
Cure in autoclave with the use of vacuum bag to reduce air bubbles
TSSA – Application

QA load test on each bonded buttons

Exhibits a cohesive failure on tempered and heat strengthened glass.

Consumer Solutions
TSSA - Long term durability:

- High durability under high temperature and humidity,
- Also under outdoor exposure and accelerated ageing
TSSA - Creep and failure under permanent load (tension):

- Point fixation 20mm under permanent tension load of 20kg and 40kg (1.25MPa and 0.62MPa)

- No creep could be measured
TSSA - Creep and failure under permanent load (shear):

- 20mm point fixation under permanent shear load with 0.6 to 3.4MPa

- Measuring time to failure:
 - 2.6 MPa: 5 – 6 hours
 - 2.0 MPa: 4 – 24 hours
 - 1.7 MPa: 34-126 days
 - < 1.7 MPa: no failure
TSSA - Time to failure under permanent load:

- For permanent loads below 1.1 MPa service life will be more than 30 years.

Function:

\[\sigma_{\text{creep}} = A t_{\text{fail}}^B \]

where \(y = 2.1611x^{-0.964} \) and \(R^2 = 0.9269 \).
TSSA - SAFETY INSIDE...Installation of point fixed units

- TSSA turns white, when reaching max. stress level (12.5 vs 22.6 MPa)
- Reversible – turns crystal clear again, when stress released
- Indicates immediately if stress exceeded

→ Establish Installation Guideline considering
 → All relevant installation parameters
 → No permanent torque during installation
TSSA – Finite Element Modelling

- FEA analysis for a point fixation under eccentric shear load, stress in TSSA interlayer based on hyperelastic material law.
- “Crescent Moon” shaped whitening and cohesive failure pattern observed during full mock up test.
- Model simulated to both whitening and failure
 Load at whitening: 12.504 MPa
 Load at failure: 22.649 MPa
TSSA - Full Scale Mock Up Test

• Tested Glass Size: 1.8m x 3.6mx 15mm monolithic glass
• Glass had 6 x 50mm TSSA support in this PMU test
• Mock-up was tested at 0.5 kPa increments to failure (3.7 kPa)
 - Material experienced whitening at 2.0kPa load
 - Material experienced failure at middle button under 3.7kPa
TSSA – Project Reference

Airborne America skydiving tunnels, San Diego, CA, USA
Airborne America skydiving tunnels, San Diego, CA, USA
TSSA – Project Reference

JR-Tsudanuma Station South Gate Skylight For Lift, Japan
TSSA – Project Reference

Suginami Special Welfare Koonji Office, Japan
TSSA – Project Reference

PressGlass Factory Varazhdin, Croatia
Transparent Structural Silicone Laminates (TSSL)

- Silicone film adhesive - 1mm thick film
- Supplied in a cooled container on a roll in different lengths (1-20m), width:180mm
- Multiple layers, if required
- High transparency, crystal clear
- Strong adhesion performance
- High performance silicone durability
- Removable by cutting
- High design strength
 - 1.0 MPa Dynamic design strength
 - 0.6 MPa static design strength

For Glass Stair Connection
For Glass Railing Bonding

© Zak World of Façades Hong Kong Conference
TSSL - Crystal Clear FUN

Vidre Slide, Cricursa and EOC
Transparent Structural Sealant 2400

- For interior and exterior applications
- High transparency, crystal clear
- Linear bonding
- Strength
 - Primerless adhesion
 - High initial tack
 - 0.14 MPa dynamic design strength
 - 8,000 Pa static design strength
 - 50% movement capability
2400 - Optically Clear

Transparency data after aging. Human eye’s visible range are between 380-780nm

UA340 exposure 10,000hrs test shown no yellowing.
2400 - Cure Behavior and Initial Tack

- Hotmelt, 130°C
- 1p, moisture-activated condensation cure
- Neutral cure, methanol as by-product
- VOC < 15 g/L

\[
2\text{Si(OR)} + \text{H}_2\text{O} \xrightarrow{\text{catalyst}} \text{SiOSi} + 2\text{ROH}
\]

- Pulling speed: 6mm/min
- glass-glass H-pieces
 (12 x 3 x 50 mm3)
2400 - Green Strength Build Up

Time = 0
Dispensed onto
883-gram granite slab
(8.66 N)

Time = 10 s
Polycarbonate coupon
5.6 \times 25.4 = 142 \text{ mm}^2
adhered to granite slab

Time = 20 s
Assembly lifted off
8.66 N \div 142 \text{ mm}^2 =
0.06 \text{ MPa (8.7 psi)}

One-part structural sealant green strength is 300Pa

HM2400 green strength up to 10,000Pa
Dynamic Load Resistance

<table>
<thead>
<tr>
<th>Tension</th>
<th>Max tension (MPa)</th>
<th>Elongation at break (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4W RT</td>
<td>1.02</td>
<td>400</td>
</tr>
</tbody>
</table>

1.0MPa Safety Factor of 6 → 0.16MPa

Dynamic design strength = 0.14MPa
Static Load Resistance

• Lap shear 15*30*2mm
• 4 weeks cure
• Climatic chamber at 60°C and 85% relative humidity under permanent stress and Max stress applied on the material:
 • 33,000Pa: more than 110 days, no movement
33,000 Pa with a Safety Factor of 4

Static design strength = 8000Pa
2400 - Durability

<table>
<thead>
<tr>
<th>Sample</th>
<th>Maximum tensile (MPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4W/RT (reference)</td>
<td>1.02</td>
</tr>
<tr>
<td>UV exposure</td>
<td></td>
</tr>
<tr>
<td>4W/RT + UV 10000hr</td>
<td>0.99</td>
</tr>
<tr>
<td>Hot water immersion</td>
<td></td>
</tr>
<tr>
<td>4WRT 6W/H20 45°C</td>
<td>1.15</td>
</tr>
<tr>
<td>4WRT 3W/H20 55°C</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Hurricane testing (ASTM E1886)
- Passed 9000 cycles at ±3.8kPa
2400- Crystal Clear Structural Glass Connections
HM2400 has better WVTR than conventional structural sealant (15~30% improvement)
Crystal Clear Bonding Technology

TSSA
- Point fixing, EXTERIOR Application
- Glass-Metal
- Bundled Services: Blueprint, Testing, Calculation, Start-up, QB, warranty
- Strength: $\delta_{DYN}=1.3$ MPa, $\tau_{Stat}=0.6$ MPa

TSSL
- Point or other geometries, INTERIOR & EXTERIOR Application
- Glass-Glass or Glass-Steel
- Bundled Services: Start-up, QB, Warranty
- Strength: $\delta_{DYN}=1.0$MPa, $\tau_{Stat}=0.6$MPa

2400
- Structural and assembly adhesive, INTERIOR & EXTERIOR
- Various substrates
- Bundled Services: Blueprint, Calculation, Start-up, QB, warranty
- Strength: $\delta_{DYN}=0.14$MPa, $\tau_{Stat}=8000$Pa
Dow Corning Became 100% Dow Chemical Subsidiary in 2016 and merged into Dow Chemical in Feb 2018

Dow Corning® Products Rebrand to DOWSIL™

DOWSIL™ 2400
DOWSIL™ TSSA
DOWSIL™ TSSL
DOWSIL™ 795
DOWSIL™ 983
DOWSIL™ 791

© Zak World of Facades, Hong Kong Conference

Consumer Solutions
Thank You

The information contained in this communication does not constitute an offer, does not give rise to binding obligations, and is subject to change without notice to you. The creation of binding obligations will occur only if an agreement is signed by authorized representatives of Dow and your company. Any reference to competitor materials contained in this communication is not an endorsement of those materials by Dow or an endorsement by the competitor of Dow materials.

To the fullest extent permitted by applicable law, Dow disclaims any and all liability with respect to your use or reliance upon the information. DOW DOES NOT MAKE ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, WITH RESPECT TO THE UTILITY OR COMPLETENESS OF THE INFORMATION AND DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. DOW DISCLAIMS LIABILITY FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

© 2017 The Dow Chemical Company. All rights reserved.